FGF-1-dependent proliferative and migratory responses are impaired in senescent human umbilical vein endothelial cells and correlate with the inability to signal tyrosine phosphorylation of fibroblast growth factor receptor-1 substrates
نویسندگان
چکیده
Senescent cells do not proliferate in response to exogenous growth factors, yet the number and affinity of growth factor receptors on the cell surface appear to be similar to presenescent cell populations. To determine whether a defect in receptor signaling exists, we analyzed human umbilical vein endothelial cells (HUVEC) since HUVEC growth is absolutely dependent upon the presence of FGF. We report that in both presenescent and senescent HUVEC populations, FGF-1 induces the expression of cell cycle-specific genes, suggesting that functional FGF receptor (FGFR) may exist on the surface of these cells. However, the tyrosine phosphorylation of FGFR-1 substrates, Src and cortactin, is impaired in senescent HUVEC, and only the presenescent cell populations exhibit a FGF-1-dependent Src tyrosine kinase activity. Moreover, we demonstrate that senescent HUVEC are unable to migrate in response to FGF-1, and these data correlate with an altered organization of focal adhesion sites. These data suggest that the induction of gene expression is insufficient to promote a proliferative or migratory phenotype in senescent HUVEC and that the attenuation of the FGFR-1 signal transduction pathway may be involved in the inability of senescent HUVEC to proliferate and/or migrate.
منابع مشابه
VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملDifferential transforming abilities of non-secreted and secreted forms of human fibroblast growth factor-1.
Fibroblast growth factor (FGF)-1(1-154), the precursor for acidic FGF-1(21-154), is a potent angiogenic polypeptide, the structure of which lacks a signal peptide sequence for secretion. To investigate the biological significance of this structural feature, we have attempted forced secretion of FGF-1 through fusion of the entire FGF-1 coding frame with the signal peptide (sp) from the hst/KS3 g...
متن کاملPigment epithelium-derived factor inhibits fibroblast-growth-factor-2-induced capillary morphogenesis of endothelial cells through Fyn.
Pigment epithelium-derived factor (PEDF) exerts anti-angiogenic actions. However, the signal-transduction pathways regulated by PEDF remain to be elucidated. We show here that PEDF inhibited fibroblast growth factor 2 (FGF-2) induced capillary morphogenesis of a murine brain capillary endothelial cell line (IBE cells) and of human umbilical-vein endothelial cells (HUVECs) cultured on growth-fac...
متن کاملFibroblast growth factor-2, but not vascular endothelial growth factor, upregulates telomerase activity in human endothelial cells.
OBJECTIVE Telomerase plays a major role in the control of replicative capacity, a critical property for successful angiogenesis and maintenance of endothelial integrity. In this study, we examined the relationship between telomerase activity and endothelial cell proliferation as well as the regulation of this enzyme by fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor-A ...
متن کاملHSulf-1 inhibits angiogenesis and tumorigenesis in vivo.
We previously identified HSulf-1 as a down-regulated gene in several tumor types including ovarian, breast, and hepatocellular carcinomas. Loss of HSulf-1, which selectively removes 6-O-sulfate from heparan sulfate, up-regulates heparin-binding growth factor signaling and confers resistance to chemotherapy-induced apoptosis. Here we report that HSulf-1 expression in MDA-MB-468 breast carcinoma ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 134 شماره
صفحات -
تاریخ انتشار 1996